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The traditional logic of giving children sweets after an 
injury or to endure vaccinations has a sound basis in 
theories of motivational opponency. Human and animal 
studies have shown that reward can inhibit pain 
(Becker, Gandhi, Elfassy, & Schweinhardt, 2013; Dum 
& Herz, 1984; Leknes & Tracey, 2008), allowing sup-
pression of pain reflexes to promote reward-acquiring 
behavior (Fields, 2018). Conversely, in situations in 
which pain is judged to be more important than reward 
consumption, pain can also be facilitated, prioritizing 
pain avoidance or escape (Becker et al., 2013; Becker, 
Gandhi, Chen, & Schweinhardt, 2017; Fields & Margolis, 
2015). Both cases illustrate how pain motivation and 
pain affect can be dissociated from perceptual discrim-
ination—a concept initially proposed in Melzack’s tri-
partite model of pain, which considered pain as 
constructed of distinct sensory-discriminative, affective-
motivational, and cognitive subcomponents (Melzack 
& Casey, 1968).

A dissociation between discrimination and pain 
affect and motivation was famously shown in a classic 
counterconditioning experiment (Dickinson & Pearce, 
1977; Erofeeva, 1921). When painful shock was associ-
ated with a subsequent reward, appetitive responses 
gradually and completely replaced pain responses, indi-
cating that the pain had lost its aversiveness. However, 
in this situation, discriminative pain responses must still 
be present to allow the reward to continue to be pre-
dictable. This leads to the prediction that reward can 
spare pain discrimination, although this has not previ-
ously been directly tested. This prediction creates com-
peting hypotheses: Either reward provides a blanket 
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Abstract
The notion that reward inhibits pain is a well-supported observation in both humans and animals, allowing suppression 
of pain reflexes to acquired rewarding stimuli. However, a blanket inhibition of pain by reward would also impair 
pain discrimination. In contrast, early counterconditioning experiments implied that reward might actually spare pain 
discrimination. To test this hypothesis, we investigated whether discriminative performance was enhanced or inhibited 
by reward. We found in adult human volunteers (N = 25) that pain-based discriminative ability is actually enhanced 
by reward, especially when reward is directly contingent on discriminative performance. Drift-diffusion modeling 
shows that this relates to an augmentation of the underlying sensory signal strength and is not merely an effect of 
decision bias. This enhancement of sensory-discriminative pain-information processing suggests that whereas reward 
can promote reward-acquiring behavior by inhibition of pain in some circumstances, it can also facilitate important 
discriminative information of the sensory input when necessary.
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inhibition of pain in line with the conventional notion 
of motivational opponency or reward is able to specifi-
cally enhance pain discrimination. In the current inves-
tigation, we tested whether discriminative performance 
was enhanced or inhibited by reward.

Method

Participants

To not overestimate experimental power, we based our 
a priori sample-size calculation on traditional analysis 
strategies—repeated measures analysis of variance 
(ANOVA) instead of linear mixed models (LMMs) or 
drift-diffusion models. This a priori sample-size calcula-
tion indicated that 23 participants would be needed to 
achieve the desired medium effect size (f ) of .25 (α = 
.05, β = 0.80) using a repeated measures within-subjects 
design (the analysis was conducted using G*Power 3.1; 
Faul, Erdfelder, Lang, & Buchner, 2007). Anticipating 
an attrition rate of 10%, we recruited 25 adults (21 
women; age: M = 22.87 years, SD = 7.17), who partici-
pated in the study after giving written informed consent. 
Data collection was stopped when the prespecified tar-
get of 25 participants was reached. Participants consisted 
of a convenience sample recruited via online advertise-
ments at the local university. Exclusion criteria for par-
ticipation were chronic pain and a history of psychiatric 
or neurological diseases. The study was approved by the 
Ethics Committee II of the Medical Faculty Mannheim of 
Heidelberg University.

General procedure

Each participant completed three testing sessions on 
separate days. Each testing session comprised a base-
line assessment of participants’ pain sensitivity to indi-
vidually adjust stimulus intensity in the following 
pain-discrimination task. This task was performed in 
three conditions over the separate sessions in counter-
balanced order across participants, operationalizing 
different reward contingencies.

Thermal stimulation

Participants received thermal stimuli on the ball of the 
thumb (thenar eminence) of their nondominant hand. 
Stimuli were applied using a thermode (MSA Thermot-
est; Somedic SenseLab AB, Sösdala, Sweden), which was 
embedded in a Styrofoam hemisphere to allow comfort-
able placement of the hand. The thermode size was 2.5 
cm × 5 cm. Baseline temperature was kept constant at 
40° C to avoid long temperature rise times (rate of tem-
perature change = 5.5° C per second) to the target 

temperatures in the pain-discrimination task. For safety 
reasons, the maximal temperature was 50° C.

Stimulus-intensity calibration

To adjust stimulus intensity during the discrimination 
task to participants’ individual pain sensitivity, we 
assessed participants’ heat-pain threshold and heat-pain 
tolerance using a method-of-limits procedure. In this 
procedure, the temperature at the thermode slowly 
increased by 1° C per second. Participants were 
instructed to press a button twice—first, when the pain 
threshold was reached (i.e., when they perceived the 
first painful sensation), and second, when the pain 
tolerance was reached (i.e., when they could not toler-
ate any further increase of the temperature), after which 
the temperature decreased immediately. This procedure 
was repeated four times, and the average of the last 
three repetitions was used as an estimate of pain thresh-
old and pain tolerance.

In a subsequent calibration step implemented using 
a simple staircase procedure, participants received pain 
stimuli for 20 s. Using a horizontally oriented numerical 
rating/visual analog scale (VAS) ranging from 0 (no 
sensation) to 200 (most intense pain tolerable), with 100 
being the pain threshold (Becker, Gandhi, Pomares, 
Wager, & Schweinhardt, 2017), participants constantly 
rated the perceived intensity of this stimulation, which 
could vary because of habituation and sensitization. 

Statement of Relevance 

The behavior of humans and other animals is deter
mined by sensory inputs and motivational drives both 
positive and negative. We typically think of positive 
and negative motivations as inhibiting one another. 
This is the logic behind giving children sweets after 
an injury or in anticipation of a vaccination—they will 
feel less pain if they are experiencing pleasure. But 
mutual inhibition may not always be beneficial, such 
as when the ability to discriminate pain helps you to 
obtain reward. In such cases, reward may actually 
enhance pain, at least in terms of discriminatory 
ability. In this research, we tested whether monetary 
rewards would boost discrimination of an increase 
of a painful stimulus (heat). We found that indeed 
it could, especially when the reward was directly 
contingent on discrimination performance. These 
results show that reward and pain do not have a 
blanket mutual inhibitory relation. Instead, pain is 
selectively tuned according to the broader goals of 
the individual.
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The first trial of this calibration started with a stimulus 
intensity of the pain threshold plus 50% of the differ-
ence between the pain threshold and pain tolerance, 
as assessed before. If the rating of this stimulus intensity 
at the end of the stimulation was lower than 130 or higher 
than 150 (140 ± 10) on the VAS, the stimulus intensity of 
the next trial was increased or decreased. For every 10 
points on the VAS below 130 or above 150 (140 ± 10), 
the temperature was increased or decreased by 0.1° C. 
The calibration procedure was stopped if the rating fell 
in the target range of 130 to 150, and the resulting 
stimulus intensity was then used for the stimulation 
temperature of the discrimination task, in which we 
aimed for a moderately painful stimulation intensity.

Perceptual-discrimination task

Participants performed a two-alternative forced-choice 
one-interval discrimination task (see Fig. 1c), in which 
a thermal stimulus was applied and held within the nox-
ious range for several seconds, during which a short 
additional thermal pulse of different magnitudes (0.2° C,  
0.4° C, 0.6° C, 0.8° C) could sometimes occur and that 
the participant was required to detect.

At the beginning of each trial, the stimulation inten-
sity increased to the individually adjusted temperature 
determined before. After an interval of 4 s to allow 
perception to reach a steady state, a visual cue indi-
cated the start of the detection interval. This cue was 
followed by a variable interval of 500 ms to 1,500 ms, 
after which the thermal pulse could be delivered (test 
trials) or the temperature stayed constant (control tri-
als). Immediately afterward, participants indicated 
whether or not they had felt a pulse by pressing a cor-
responding button on a response unit. Depending on 
the experimental reward condition, participants then 
received a monetary reward of €0.10 or nothing. At the 
end of each trial, the stimulation intensity decreased to 
baseline, and after a break of 5 s, the next trial started.

The task was performed in three reward conditions: 
In the contingent-reward condition, monetary reward 
was immediately given for each correct answer, which 
implemented a continuous reinforcement schedule; in 
the noncontingent-reward condition, reward was pro-
vided on a comparable number of trials but was inde-
pendent of participants’ performance; and in the 
nonreward condition, the participant received no reward 
and no other feedback whether the responses were 
correct during the task but was awarded a comparable 
amount of money at the end of the experiment for tak-
ing part. The noncontingent-reward condition was 
implemented via a yoked procedure in which monetary 
rewards were implemented in the same order as the 
received rewards across all trials of the task in the 

contingent-reward condition of another participant. Partici-
pants were not informed of any reward contingencies.

The discrimination task comprised 90 trials in total, 
with 18 trials of each of the five temperature-pulse con-
ditions (0.2° C, 0.4° C, 0.6° C, 0.8° C, and no change). 
The trials were presented in pseudorandom order and 
separated into blocks of 30 trials with breaks of 1 min 
between each block. Before and after each of these 
blocks, participants rated the perceived intensity of 
constant thermal stimuli of 20-s duration at the target 
temperature of the discrimination task. These intensity 
ratings were used to readjust the target temperature of 
the discrimination task to fall within the target range 
of 130 to 150 on the VAS for the following block of 
trials to account for habituation and sensitization. If the 
rating at the end of the constant stimulation was below 
130 or above 150 on the VAS, the stimulation intensity 
was adjusted as in the calibration procedure, aiming at 
a rating of between 130 and 150. The readjusted tem-
perature was used as the stimulation intensity for the 
subsequent block of 30 trials.

Data analysis

None of the participants or observations were excluded 
from the analyses.

Behavioral data.  For the analysis of response accuracy 
and reaction times, separate LMMs were calculated with 
reward condition (nonreward, contingent reward, noncon-
tingent reward) and pulse (0.2° C, 0.4° C, 0.6° C, 0.8° C,  
no change) as within-subjects fixed factors and the inter-
action of reward condition and pulse; either response 
accuracy or reaction time was the dependent variable. For 
the analysis of VAS ratings and stimulation intensities, sep-
arate LMMs were calculated with reward condition (non-
reward, contingent reward, noncontingent reward) and 
time (Blocks 1, 2, and 3) as within-subjects fixed factors 
and the interaction of reward condition and time; either 
VAS rating or stimulus intensity was the dependent vari-
able. For the analysis of the VAS ratings, only the ratings 
after each block of 30 trials were used. All LMM analyses 
included the participant as a random intercept. Significant 
main effects and interactions of the LMMs were followed 
by post hoc pairwise comparisons. The significance level 
(α) was set to .05. Where appropriate, correction for mul-
tiple testing was applied using a false-discovery rate 
(Benjamini & Hochberg, 1995) to avoid alpha inflation. 
Exact p values are reported with significances corrected 
for multiple comparisons. Because of the way variance is 
partitioned in LMMs (e.g., Rights & Sterba, 2019), there is 
no agreed-on method to calculate standard effect sizes for 
individual model terms such as main effects or interac-
tions; therefore, we do not report effect sizes for main 
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Fig. 1.  Overview of the drift-diffusion model and its parameters (a), expected effects of reward on model parameters (b), and design of 
the discrimination task (c). Drift-diffusion models (a) are based on the assumption that a decision is made when the noisy input as a sto-
chastic process reaches one of two decision thresholds; the distance between is described as the “boundary separation a,” characterizing 
the conservativeness of a decision and how much evidence is needed. Sensory input provides the evidence accumulated from a certain 
“starting point z,” which can be shifted by a priori biases. Speed of evidence accumulation is described as the “drift rate v” and reflects the 
strength of the sensory signal. The total reaction time also includes processes not related to the decision process, such as stimulus encod-
ing and response execution, described as the “nondecision time t.” Drift-diffusion models incorporate separate distributions of reaction 
times for correct and incorrect responses, simultaneously using information on mean reaction times and their variance as well as response 
accuracy. As illustrated in (b), it is hypothesized that monetary reward given contingently on correct discrimination of a thermal nocicep-
tive pulse increases drift rates v for correct responses with a simultaneous decrease in drift rate for incorrect responses (reaction time 
distribution illustrated in dark gray) compared with noncontingent and nonreward conditions (reaction time distribution illustrated in light 
gray). At the beginning of each trial of the discrimination task (c), a thermal probe is heated and held to an individually adjusted painful 
target temperature. After a variable delay, a pulse of varying magnitude may be presented (0.2° C, 0.4° C, 0.6° C, 0.8° C) or not, and the 
participant is required to identify the presence or absence of a pulse with a button press for each. In the reward conditions, feedback was 
provided immediately afterward. In each reward condition, participants performed 90 trials (18 of each stimulus magnitude) in blocks of 
30 trials with breaks of 1 min between each block.
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effects and interactions related to LMM analyses. Never-
theless, LMMs were used here because mixed models are 
superior than alternative approaches in controlling for 
Type I errors; consequently, results from mixed models 
are more likely to generalize to new observations (e.g., 
Barr, Levy, Scheepers, & Tily, 2013). For post hoc pairwise 
comparisons, effect sizes (Cohen’s ds) of the means and 
standard deviations of the respective comparison were 
calculated by dividing the difference of the means by the 
pooled standard deviation.

Hierarchical drift-diffusion model.  Drift-diffusion mod-
els were used to differentiate changes in perceptual signal 
strength and response biases (see Fig. 1a). Computational 
drift-diffusion models (Ratcliff & McKoon, 2008) are bio-
logically realistic models that have been proven success-
ful in models of vision and other sensory domains, 
explaining behavior and neurophysiological responses 
(Heekeren, Marrett, & Ungerleider, 2008). These models 
consider decisions as a process of accumulating sensory 
input. If a certain threshold is reached, a decision will be 
made (Ratcliff & McKoon, 2008). Parameters of the deci-
sion-making process are estimated using response accu-
racy (incorporating correct and incorrect responses) and 
reaction time distributions. The following parameters are 
estimated in drift-diffusion models: (a) the starting point 
(z), the point between the two boundaries at which the 
sampling process as accumulation of evidence starts, with 
a shift of z toward one of the boundaries resulting in less 
information being needed to reach the boundary and thus 
indicating an a priori response bias; (b) the drift rate (v), 
the speed at which the evidence is accumulated, with 
higher values indicating a faster accumulation speed; (c) 
the boundary separation (a), which describes the distance 
between the two decision boundaries, with a smaller dis-
tance indicating that less information is needed for a deci-
sion; and (d) the nondecision time (t), the time required 
for response encoding and response execution (i.e., the 
time not required for decision-making but reflected in the 
total reaction time; see Fig. 1a).

Here, the parameters of the model were estimated 
with the hierarchical drift-diffusion model as a hierar-
chical Bayesian estimation of the drift-diffusion model 
using a Python-based algorithm (Wiecki, Sofer, & Frank, 
2013; http://ski.clps.brown.edu/hddm_docs). Com-
pared with traditional drift-diffusion models, the hier-
archical model requires fewer data points per participant 
because parameter estimation is based on a group dis-
tribution (Vandekerckhove, Tuerlinckx, & Lee, 2011). 
The best-fitting model was chosen on the basis of the 
deviance information criterion. On the basis of this 
criterion, separate models for each reward condition 
(no reward, contingent reward, and noncontingent 
reward) were calculated, and for each reward condition, 

the model was set up to allow the drift rate to differ 
between pulse conditions, while starting point, bound-
ary separation, and nondecision time were kept fixed, 
on the basis that these variables should not depend on 
pulse magnitude. Intertrial variability was allowed for 
the drift rate. The probability distributions of the param-
eters (i.e., the posterior distributions) were calculated 
using Markov chain Monte Carlo (MCMC) sampling 
methods. Noninformative priors were used, that is, uni-
form distributions with equal probabilities across a 
range of parameter values. We generated 20,000 sam-
ples for each model, discarding the first 15,000 samples 
because early samples are regarded as unreliable 
because of random selection of initial values. Samples 
were further thinned by a factor of 5. MCMC conver-
gence was reached for all models as indicated by the 
diagnostics of the hierarchical drift-diffusion models (all 
Rs < 1.01). Because outliers in reaction times are likely 
caused by other processes, a fixed probability of 5% for 
obtaining an outlier in reaction times was applied to 
remove the outlier prior to model fitting (Wiecki et al., 
2013; http://ski.clps.brown.edu/hddm_docs).

Differences in the drift rate v between thermal pulses 
within each reward condition and between reward con-
ditions as well as differences in the starting point z, the 
boundary separation a, and the nondecision time t 
between the reward conditions were assessed by testing 
the overlap of the posterior distributions of the drift 
rates for no pulses (0.0° C) compared with the other 
pulse conditions (0.2° C, 0.4° C, 0.6° C, 0.8° C). Statisti-
cal inference was based on computing tail areas of 
contrast posteriors, with a difference being assumed 
if the probability of an overlap between distributions 
was smaller than 2.5%. Therefore, Pr(X) indicates the 
posterior probability that a proposition X is true, given 
the data at hand. If this probability is very low, the 
complement of X is inferred. For example, to test 
whether the drift rate v is closer to the upper bound-
ary (correct response) with 0.4° C pulses compared 
with 0.2° C pulses, we would evaluate the proposi-
tion v0.4°C ≤ v0.2°C, computing the posterior probability 
that Pr(v0.4°C ≤ v0.2°C) ≤ 0. If this probability is greater 
than 97.5%, v0.4°C ≤ v0.2°C is inferred, that is, the drift rate 
for 0.4° C pulses is lower or the same as the drift rate 
for 0.2° C pulses. If the probability is less than 2.5%, 
v0.2°C > v0.4°C is inferred, that is, the drift rate for 0.4° C  
pulses is higher than the drift rate for 0.2° C pulses. For the 
specific hypothesis that operant reinforcement increases 
signal strength, we tested Pr(vnoncontingent ≤ vcontingent) ≤ 0  
and Pr(vno ≤ vcontingent) ≤ 0. If these probabilities were 
greater than 95%, vnoncontingent ≤ vcontingent and vno ≤ 
vcontingent were inferred. Tail areas of contrast posteriors 
are a Bayesian analog to classical p values associated 
with one- or two-tailed tests.

http://ski.clps.brown.edu/hddm_docs
http://ski.clps.brown.edu/hddm_docs
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Results

Detection accuracy increased with pulse magnitude in 
all three reward conditions (see Fig. 2a), which is mir-
rored in a main effect of pulse magnitude for the analy-
sis of accuracy (percentage correct), F(4, 24) = 97.94, 

p < .001. Accuracy also differed between reward condi-
tions—main effect of reward condition: F(2, 24) = 3.66, 
p = .040—the highest accuracy was in the with contin-
gent-reward condition, and there was no difference 
between the noncontingent and no-reward conditions 
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(across pulse magnitudes, contingent reward: M = 78%, 
SD = 21%; noncontingent reward: M = 74%, SD = 20%; 
no reward: M = 74%, SD = 20%; post hoc comparisons: 
mean difference between contingent and noncontin-
gent reward = 0.04, df = 24, p = .031, d = 0.16; mean 
difference between contingent and no reward = −0.04, 
df = 24, p = .054, d = 0.19; mean difference between 
noncontingent and no reward = 0.003, df = 24, p = 
.886, d = 0.01). In addition, we found a significant 
interaction between pulse magnitude and condition, 
F(8, 24) = 5.92, p < .001 (for post hoc comparisons, 
see Table S1 in the Supplemental Material available 
online).

Reaction times were shorter for correct responses 
than for incorrect responses (see Fig. 2b)—main effect 
of response: F(1, 374) = 100.98, p < .001—and shorter 
with increasing pulse magnitude (see Fig. 2c)—main 
effect of pulse magnitude: F(4, 498) = 3.37, p = .01—but 
there was no effect of reward condition—main effect 
of reward condition: F(2, 142) = 1.15, p = .318.

The VAS pain ratings of the painful ramped baseline 
temperature did not differ between reward conditions 
(see Fig. 2d), F(2, 192) = 2.42, p = .091. The pain ratings 
also did not differ between blocks (assessed after each 
block of 30 trials)—main effect of block: F(2, 192) = 
0.69, p = .502. Similarly, temperature of the baseline 
(which was adjusted on the basis of variations of rat-
ings) did not differ between reward conditions (see Fig. 
2e)—main effect of reward condition: F(2, 195) = 0.27, 
p = .767—and blocks—main effect of block: F(2, 196) = 
0.23, p = .797.

These findings provide an initial suggestion that con-
tingent reward might enhance pain-discrimination abil-
ity. However, the overall metric of percentage of correct 
responses cannot fully capture the full, complex nature 
of the discrimination process, which involves a number 
of underlying processes. Therefore, we investigated 
which component of the perceptual decision-making 
process was most sensitive to reward by applying a 
drift-diffusion-model analysis (see Fig. 1). As shown in 
Figure 2c, the drift rate (i.e., signal strength) increases 
with increasing pulse magnitude; this is expected 
because the magnitude of peripheral stimulation is the 
main determinant of drift-rate strength. But critically, 
reward condition also had an effect on the drift rate 
(see Fig. 2c). Specifically, pairwise comparisons of pos-
terior probabilities showed a higher drift rate with con-
tingent reward for all pulse magnitudes with a higher 
drift rate with contingent reward for all pulse magni-
tudes compared with no reward—0.2° C: Pr(vcontingent ≤ 
vno) = 0.048, 0.4° C: Pr(vcontingent ≤ vno) = 0.017, 0.6° C: 
Pr(vcontingent ≤ vno) = 0.008, 0.8° C: Pr(vcontingent ≤ vno) = 
0.003—and compared with noncontingent with pulse 
magnitudes of 0.4° C: Pr(vcontingent ≤ vnoncontingent) < 0.001. 
Noncontingent reward increased the drift rate in 

comparison with no reward only with pulses of 0.4° C: 
Pr(vnoncontingent ≤ vno) = 0.012. For a full list of pairwise 
comparisons, see Table S2 in the Supplemental Material. 
We found no effect of reward condition on the other 
model parameters (i.e., decision bias, decision conser-
vativeness, and nondecision time; see Fig. S1 in the 
Supplemental Material).

Discussion

The results indicate that reward can specifically aug-
ment sensory nociceptive information in healthy adults. 
This means that, in addition to the inhibitory effect of 
reward on pain motivation and pain affect (Becker 
et al., 2013; Dum & Herz, 1984; Leknes & Tracey, 2008), 
reward can have excitatory effects on sensory-discrim-
inative pain processing in some circumstances.

A key piece of evidence that underlies the tripartite 
model of pain initially proposed by Melzack (Melzack 
& Casey, 1968) is the counterconditioning experiment 
from Erofeeva and Pavlov (Dickinson & Pearce, 1977; 
Erofeeva, 1921). The emergence of appetitive responses 
gradually replacing pain responses showed that some 
aspect of the nociceptive stimulus was still able to pre-
dict reward. However, there have been few objective 
demonstrations using behavioral measures that reward 
might have facilitatory effects on pain discrimination. 
Here, we clearly showed that reward can enhance dis-
criminative processing in healthy adults, directly refut-
ing the notion that reward inhibits pain as a universal 
phenomenon. No impact of reward on pain ratings was 
found here, likely because participants rated pain in 
extra trials without the discrimination task and without 
reward.

Mechanistically, there are at least three possible ways 
in which reward might have differential co-occurring 
effects on different components of pain. First, pain 
could still be inhibited by reward overall, but discrimi-
nation was selectively enhanced by increasing the pre-
cision of information processing in the brain (i.e., 
sharpening the signal-to-noise ratio). Second, reward-
based descending inhibition of pain might have a selec-
tive effect on different ascending nociceptive pathways. 
Some evidence indicates that descending inhibition can 
have co-occurring differential effects on populations of 
C-fiber-responsive and A-delta-fiber-responsive dorsal 
horn neurons (Heinricher, Tavares, Leith, & Lumb, 
2009). Third, it may be that in some behavioral contexts, 
reward globally enhances pain, for instance by atten-
tional effects arising from specific goal-directed behav-
ioral and task requirements. This remains possible 
because although our data show enhancement of dis-
crimination, we found no effect on affective behavior 
and ratings, which itself is not sufficient to infer a func-
tional dissociation.
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We also found that discrimination, although weaker, 
could be enhanced simply by the presence of reward 
not contingent on performance (i.e., increase of the drift 
rate for noncontingent compared with no reward for a 
pulse magnitude of 0.4° C). Thus, the mere presence of 
a rewarding context might have a nonspecific enhancing 
effect on pain processing (Clark, Lawrence, Astley-
Jones, & Gray, 2009), leading to a higher drift rate. 
This was noted at temperature differences of 0.4° C 
close to the just-noticeable difference in heat pain, 
suggesting that the effect might interact with judgment 
uncertainty.

In summary, the results suggest that reward can 
specifically enhance pain discrimination in healthy 
adults. In principle, this provides a way for organisms 
to suppress unnecessary pain responding in the pursuit 
of greater reward without corrupting useful discrimina-
tive information. However, whether these results can 
be generalized to other populations, for example, 
patients with chronic pain, must be tested in future 
investigations.
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